948 research outputs found

    Optimization of a yeast estrogen screen and its applicability to study the release of estrogenic isoflavones from a soygerm powder.

    Get PDF
    Here we describe a redesigned protocol of the yeast estrogen screen developed by Routledge and Sumpter. The redesigned test comprises two steps. First, a large amount of yeast with estrogenic compounds is incubated for 24 hr. Subsequently, a mixture of cycloheximide and the chromogenic substrate chlorophenol red-beta-d-galactopyranoside (CPRG) is added. The cycloheximide stops protein synthesis and allows for an end-point measurement of beta-galactosidase activity generated during the first 24 hr. CPRG is converted to chlorophenol red and reflects beta-galactosidase activity, which is indicative of the estrogenic activity. The modifications shorten the duration of the assay at least 1 day and avoid interference of the estrogenic CPRG or chlorophenol red. The redesigned and the original protocol were used to study the estrogenic activity of bisphenol A, methoxychlor, p,p'-DDT, and isoflavones (genistein, daidzein, and glycitein). Bisphenol A, methoxychlor, and genistein triggered higher levels of beta-galactosidase activity in the redesigned protocol. Estrogenic activity of p,p'-DDT could only be demonstrated with the redesigned protocol. Glycitein and daidzein failed to give a response with both protocols. We also studied deconjugation of beta-glycosidic isoflavones present in soygerm powder. Treatment of the soygerm powder with beta-glycosidase released isoflavones. The estrogenic response of the samples was confirmed with the redesigned protocol and correlated with the amount of genistein present. The release of isoflavones under conditions prevailing in the intestines was studied. Bacterial beta-glycosidase present in the large intestine released isoflavones, and moderate estrogenic activity could be demonstrated

    A False Start in the Race Against Doping in Sport: Concerns With Cycling’s Biological Passport

    Get PDF
    Professional cycling has suffered from a number of doping scandals. The sport’s governing bodies have responded by implementing an aggressive new antidoping program known as the biological passport. Cycling’s biological passport marks a departure from traditional antidoping efforts, which have focused on directly detecting prohibited substances in a cyclist’s system. Instead, the biological passport tracks biological variables in a cyclist’s blood and urine over time, monitoring for fluctuations that are thought to indirectly reveal the effects of doping. Although this method of indirect detection is promising, it also raises serious legal and scientific concerns. Since its introduction, the cycling community has debated the reliability of indirect biological-passport evidence and the clarity, consistency, and transparency of its use in proving doping violations. Such uncertainty undermines the legitimacy of finding cyclists guilty of doping based on this indirect evidence alone. Antidoping authorities should address these important concerns before continuing to pursue doping sanctions against cyclists solely on the basis of their biological passports

    Including personal development in palliative care education to address death anxiety

    Get PDF
    Background: Death anxiety may interfere with health care workers' (HCW) relationship with patients and their families. Aims: Evaluate an intervention to address death anxiety and improve HCW skills dealing with patients/families in palliative and end-of-life care. Design: Quasi-experimental mixed methods approach with a pre-test/post-test design. Participants: 208 HCWs receiving the intervention and working in end-of-life care, in and out of palliative care units, were invited to answer quantitative and qualitative questionnaires. In the end, 150 returned with quantitative answers and of these, 94 with qualitative answers as well. Additionally, out of the 150 participants, 26 were recruited for interview. Results: Pre-and post-test results revealed a significant reduction in levels of death anxiety, an increase in existential wellbeing, and a significant improvement in HCWs' perception of the quality of their helping relationship skills with patients/families. Content analysis provided an understanding of the difficulties experienced by the HCWs and the positive impact of the intervention. Conclusion: An intervention to address death anxiety and help relationship skills can reduce the use of avoidance mechanisms and improve HCW self-perceived psycho-existential support to patients/families

    Including personal development in palliative care education to address death anxiety

    Get PDF
    Background: Death anxiety may interfere with health care workers' (HCW) relationship with patients and their families. Aims: Evaluate an intervention to address death anxiety and improve HCW skills dealing with patients/families in palliative and end-of-life care. Design: Quasi-experimental mixed methods approach with a pre-test/post-test design. Participants: 208 HCWs receiving the intervention and working in end-of-life care, in and out of palliative care units, were invited to answer quantitative and qualitative questionnaires. In the end, 150 returned with quantitative answers and of these, 94 with qualitative answers as well. Additionally, out of the 150 participants, 26 were recruited for interview. Results: Pre-and post-test results revealed a significant reduction in levels of death anxiety, an increase in existential wellbeing, and a significant improvement in HCWs' perception of the quality of their helping relationship skills with patients/families. Content analysis provided an understanding of the difficulties experienced by the HCWs and the positive impact of the intervention. Conclusion: An intervention to address death anxiety and help relationship skills can reduce the use of avoidance mechanisms and improve HCW self-perceived psycho-existential support to patients/families

    Rijkswaterstaat:Guardian of the Dutch Delta

    Get PDF
    Founded in 1798, Rijkswaterstaat, the Dutch government’s agency for infrastructural works, brought flood security, navigable waterways and highways to the Netherlands. It is an iconic institution within Dutch society, best known for its ‘battle against the water’. The Zuiderzee Works (1920–1968) and the Delta Works (1954–1997) brought worldwide acclaim. This chapter tells the story of a humble semi-military organization that developed into a formidable institution of civil engineers with a strong technocratic mission mystique. It also recounts the institutional crisis the agency experienced in the 1970s–1990s when it was too slow to adapt to major sociocultural and political changes. To ride the waves of change, it eventually developed several proactive adaptation strategies and reinvented its mission mystique in managerial terms. Adaptation to climate change now presents another key challenge, for which Rijkswaterstaat will have to develop a new ‘social license to operate’

    Interaction of cimetidine with P450 in a mouse model of hepatocarcinogenesis initiation

    Get PDF
    Many drugs and xenobiotics are lipophilic and they should be transformed into more polar water soluble compounds to be excreted. Cimetidine inhibits cytochrome P450. The aim of this study was to investigate the preventive and/or reversal action of cimetidine on cytochrome P450 induction and other metabolic alterations provoked by the carcinogen p-dimethylaminoazobenzene. A group of male CF1 mice received a standard laboratory diet and another group was placed on dietary p-dimethylaminoazobenzene (0.5% w w−1). After 40 days of treatment, animals of both groups received p-dimethylaminoazobenzene and two weekly doses of cimetidine (120 mg kg−1, i.p.) during a following period of 35 days. Cimetidine prevented and reversed δ-aminolevulinate synthetase induction and cytochrome P450 enhancement provoked by p-dimethylaminoazobenzene. However, cimetidine did not restore haem oxygenase activity decreased by p-dimethylaminoazobenzene. Enhancement in glutathione S-transferase activity provoked by p-dimethylaminoazobenzene, persisted in those animals then treated with cimetidine. This drug did not modify either increased lipid peroxidation or diminution of the natural antioxidant defence system (inferred by catalase activity) induced by p-dimethylaminoazobenzene. In conclusion, although cimetidine treatment partially prevented and reversed cytochrome P450 induction, and alteration on haem metabolism provoked by p-dimethylaminoazobenzene AB, it did not reverse liver damage or lipid peroxidation. These results further support our hypothesis on the necessary existence of a multiple biochemical pathway disturbance for the onset of hepatocarcinogenesis initiation

    The major chloroplast envelope polypeptide is the phosphate translocator and not the protein import receptor

    Get PDF
    DURING photosynthetic CO2 fixation, fixed carbon is exported from the chloroplasts in the form of triose phosphate by the chloroplast phosphate translocator, which is the principal polypeptide (E29) from spinach chloroplast envelopes1. We have sequenced this nuclear-coded envelope membrane protein from both spinach and pea chloroplasts2,3. An envelope membrane protein, E30, has been identified as a possible receptor for protein import into pea chloroplasts using an anti-idiotypic antibody approach4–6; antibodies raised against purified E30 inhibited binding and import of proteins into chloroplasts7. The amino-acid sequence of E30 deduced from its complementary DNA7 turned out to be highly homologous to that of E29, assigned by us as the spinach phosphate translocator2, and was identical to the corresponding polypeptide from pea chloroplasts3. Differences in the binding properties to hydroxylapatite of £30 and the phosphate translocator suggested that E30 was not responsible for the chloroplast phosphate-transport activity but was the chloroplast import receptor7. Here we present evidence that argues against this and which identifies E30 as the chloroplast phosphate translocator

    Diversity dynamics in New Caledonia: towards the end of the museum model?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The high diversity of New Caledonia has traditionally been seen as a result of its Gondwanan origin, old age and long isolation under stable climatic conditions (the museum model). Under this scenario, we would expect species diversification to follow a constant rate model. Alternatively, if New Caledonia was completely submerged after its breakup from Gondwana, as geological evidence indicates, we would expect species diversification to show a characteristic slowdown over time according to a diversity-dependent model where species accumulation decreases as space is filled.</p> <p>Results</p> <p>We reanalyze available datasets for New Caledonia and reconstruct the phylogenies using standardized methodologies; we use two ultrametrization alternatives; and we take into account phylogenetic uncertainty as well as incomplete taxon sampling when conducting diversification rate constancy tests. Our results indicate that for 8 of the 9 available phylogenies, there is significant evidence for a diversification slowdown. For the youngest group under investigation, the apparent lack of evidence of a significant slowdown could be because we are still observing the early phase of a logistic growth (i.e. the clade may be too young to exhibit a change in diversification rates).</p> <p>Conclusions</p> <p>Our results are consistent with a diversity-dependent model of diversification in New Caledonia. In opposition to the museum model, our results provide additional evidence that original New Caledonian biodiversity was wiped out during the episode of submersion, providing an open and empty space facilitating evolutionary radiations.</p

    Subcellular Localization of Hexokinases I and II Directs the Metabolic Fate of Glucose

    Get PDF
    The first step in glucose metabolism is conversion of glucose to glucose 6-phosphate (G-6-P) by hexokinases (HKs), a family with 4 isoforms. The two most common isoforms, HKI and HKII, have overlapping tissue expression, but different subcellular distributions, with HKI associated mainly with mitochondria and HKII associated with both mitochondrial and cytoplasmic compartments. Here we tested the hypothesis that these different subcellular distributions are associated with different metabolic roles, with mitochondrially-bound HK's channeling G-6-P towards glycolysis (catabolic use), and cytoplasmic HKII regulating glycogen formation (anabolic use).To study subcellular translocation of HKs in living cells, we expressed HKI and HKII linked to YFP in CHO cells. We concomitantly recorded the effects on glucose handling using the FRET based intracellular glucose biosensor, FLIPglu-600 mM, and glycogen formation using a glycogen-associated protein, PTG, tagged with GFP. Our results demonstrate that HKI remains strongly bound to mitochondria, whereas HKII translocates between mitochondria and the cytosol in response to glucose, G-6-P and Akt, but not ATP. Metabolic measurements suggest that HKI exclusively promotes glycolysis, whereas HKII has a more complex role, promoting glycolysis when bound to mitochondria and glycogen synthesis when located in the cytosol. Glycogen breakdown upon glucose removal leads to HKII inhibition and dissociation from mitochondria, probably mediated by increases in glycogen-derived G-6-P.These findings show that the catabolic versus anabolic fate of glucose is dynamically regulated by extracellular glucose via signaling molecules such as intracellular glucose, G-6-P and Akt through regulation and subcellular translocation of HKII. In contrast, HKI, which activity and regulation is much less sensitive to these factors, is mainly committed to glycolysis. This may be an important mechanism by which HK's allow cells to adapt to changing metabolic conditions to maintain energy balance and avoid injury
    corecore